Advanced Methods in Computational Fluid Dynamics

A four-day course ideal for Continued Professional Development, with hands-on Open Source CFD Solver training.

Advanced Methods in Computational Fluid Dynamics
This course will address the analysis of modern approaches to turbulence modelling, different models and their applications to the solution of industrial problems including external and internal aerodynamics, heat transfer, combustion, aero-acoustics, Lattice Boltzmann Method, Smooth Particle Hydrodynamics (SPH), waves and tidal energy extraction modelling.

Booking the course

Course Dates: 23-26 January 2017

Course Fee: £ 499 to £ 1285.

Download the Computational Fluid Dynamics Course Brochure

Book online

Programme outline

Computational Fluid Dynamics (CFD) is required in many industrial applications including external and internal aerodynamics, heat transfer, combustion, aeroacoustics, etc. It is “therefore”, if not more, at least equally important as experimental fluid dynamics. Nowadays many practical problems require high accuracy of prediction, taking into account different physical effects and coupling different models. The course will address some modern techniques in CFD and their applications to the solution of industrial problems. They target to resolve an inevitable trade-off between the accuracy of prediction and effectiveness of mathematical modelling. The course consists of two parts: theoretical course on advanced CFD methods and tutorials with open-source “Code_Saturne” for solving the Navier-Stokes equations. The main focus of the first part will be on high-resolution finite-volume methods for convection dominated problems, fluid-structure interaction methods, artificial boundary conditions, resolution of uncertainties, Lattice Boltzmann Method and Smooth Particle Hydrodynamics (SPH).

The second (practical) part of the course will be held at the Hartree Centre, on the campus of the Science & Technology Facilities Council (STFC) Daresbury Laboratory. This part is devoted to learning how to use the open-source CFD solver Code_Saturne, which is developed by EDF R&D for solving the Navier-Stokes equations. Code_Saturne is a co-located finite volume solver capable of handling unstructured meshes. It has a large collection of RANS/LES models with additional modules for compressible flows, combustion, radiative heat transfer, magneto-hydrodynamics, two-phase flows and atmospheric flows. Through various projects, STFC Daresbury Laboratory have tested Code_Saturne's High Performance Computing (HPC) capabilities. They also have excellent training and HPC facilities; the Hartree Centre currently hosts 41st and 49th fastest supercomputers in the world (Top500 supercomputers, Nov 2015). This is a very successful course which has been running every year since 2012. It is delivered by the academic staff of the University of Manchester and researchers from STFC. This year there will also be a guest lecture from Dr. V. Titarev from Dorodnicyn Computing Centre of Russian Academy of Sciences, Moscow Institute of Physics & Technology . The School of MACE is a world-class centre in CFD with long term experience in the development of turbulence models and their implementation to the solution of real-world industrial problems.

Learning Objectives:

  • Principal approaches to turbulence modelling
  • Fluid-structure interaction methods
  • Lattice Boltzmann Method
  • Immersed boundary methods
  • Smooth Particle Hydrodynamics (SPH)
  • Artificial boundary conditions 
  • Uncertainties in CFD modelling
  • Best practice guidelines for CFD
This is a very successful course which has been running every year since 2012. It is delivered by the academic staff from The University of Manchester and researchers from Daresbury labs, STFC. The School of MACE is a world-class Centre in CFD with the long term experience in the development of turbulence models and their implementation to the solution of real-life industrial problems.
Download the Computational Fluid Dynamics Course Brochure
▲ Up to the top