Accelerated development of a tidal stream energy industry

The research being conducted at the University of Manchester is making a key contribution in an emerging UK tidal stream industry. Our research, including development and validation of open-source software for tidal stream system design, has been instrumental to the successful delivery of major objectives of two national industry-academia marine energy projects commissioned by the Energy Technologies Institute (ETI).

These projects have reduced engineering risks that had been of concern to potential investors. Investor confidence in tidal energy has been demonstrated by Alstom’s £65m acquisition of a turbine developer following key outcomes of the ETI ReDAPT project. 

The development of a marine energy industry in the UK, with tidal stream a major component, is forecast to generate more than 68000 jobs, 20% of electricity supply and an export market valued at more than £70 billion (House of Commons Select Committee, HC1624, 2012). It has been widely recognised (UKERC, DECC, ETI) that investors would only make a significant commitment to tidal stream development after several key engineering advances had been made including:

  • development and validation of engineering models to predict energy yield, and hence revenue, from commercial scale farms 
  • demonstration of deployment and operation of a commercial scale turbine
  • development and validation of engineering tools to enable system refinement, and hence cost reduction
  • increased understanding of the environmental flows at tidal stream sites pre- and post-deployment.

Our research on tidal stream systems has addressed the development and validation of computational methods for prediction of the power output from arrays (farms) of tidal stream turbines and of the unsteady loading of tidal stream turbines in realistic tidal flows. This builds on research into wave energy arrays, CFD methodologies and the physics of shallow water flows. The key outcomes have been to:

  • Quantify the influence of hydrodynamic interactions on the loading and power output of closely spaced groups of horizontal axis tidal stream rotors. 
  • Develop and validate Computational Fluid Dynamics (CFD) methods with High Performance Computing for prediction of the time-varying loads on a tidal stream turbine subject to turbulent flow representative of full-scale measurements.

Research background

Manchester researchers from Offshore energy and coastal engineering group have increased investor confidence in tidal stream energy systems.

▲ Up to the top