Mobile menu icon
Mobile menu icon Search iconSearch
Search type

School of Mechanical, Aerospace and Civil Engineering

Computer model of machinery

Modelling and simulation

Modelling and simulation is cross-cutting to address computational modelling at multiple scales, informed and validated by unique experimental studies, and key to advancing fundamental engineering analysis.

Leading facilities

The School's unique experimental facilities include a wide wave-current flume, multiple wind tunnels, and specialist thermal hydraulics facilities.

Modelling and simulation significantly enhances our deep, fundamental fluid and solid mechanics research. We have developed a new conceptual framework for solids modelling through fracture analysis, ab initio modelling of irradiation damage, in order to model the seismic response of the whole core of a reactor.

Turbulence modelling is a core topic, while conjugate thermal analysis and complex non-Newtonian flows and hypersonic flows are emerging research areas. Significant progress has been made with coupled fluid-structure interaction problems using a range of methods including superlative expertise in smoothed-particle hydrodynamics and Lattice Boltzmann solvers. Massively parallel computing is essential and novel efficient and inexpensive parallel computing is being advanced through GPUs (graphics processing units) and mobile platforms along with development of real-time CFD methods to enable the rapid evaluation of designs and for improved local simulation.

Experimentation is vital for understanding multiphase and highly non-linear flows and this is enabled by the School’s unique experimental facilities including a wide wave-current flume, multiple wind tunnels, specialist thermal hydraulics facilities for high pressure and high temperature conditions for rotating conditions at large-scale, and engine test laboratories.

Areas of expertise

Our researchers specialise in the following areas of expertise:

  • image of a jet engine


    The use of ground and flight-based experimental test techniques to improve design and grow innovative aerodynamics concepts for the future.

  • Military aeroplane in hangar looking out at fields and mountains

    Aerospace vehicle systems

    We work at the frontier of what is possible in the design and operation of unmanned vehicles that operate in the Earth’s atmosphere, low Earth orbit and under water.

  • Graphical representation of microscopic close up of red and turquoise cells.

    Mechanics and physics of solids

    Understanding and modelling the life of engineering materials and structures during their service.

  • Graphic showing a predominently blue cube surrounded by blue, green and yellow balls

    SPH @ Manchester

    Smoothed particle hydrodynamics (SPH) is one of the most exciting new areas in the field of computational fluid dynamics.

  • Visual display from Concorde showing speed of Mach 2.00

    Structures in extreme environments

    We work to understand the safety and resilience of structures, particularly in extreme situations, contributing to improved methods of assessment, design and construction.

  • Graphic showing variously shaped coloured elements passing round a red oval


    Research into fluid mechanics, encompassing renewable energy, thermal power, nuclear hydraulics and turbulence modelling.